Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays

نویسندگان

  • Seyoon Kim
  • Min Seok Jang
  • Victor W. Brar
  • Yulia Tolstova
  • Kelly W. Mauser
  • Harry A. Atwater
چکیده

Subwavelength metallic slit arrays have been shown to exhibit extraordinary optical transmission, whereby tunnelling surface plasmonic waves constructively interfere to create large forward light propagation. The intricate balancing needed for this interference to occur allows for resonant transmission to be highly sensitive to changes in the environment. Here we demonstrate that extraordinary optical transmission resonance can be coupled to electrostatically tunable graphene plasmonic ribbons to create electrostatic modulation of mid-infrared light. Absorption in graphene plasmonic ribbons situated inside metallic slits can efficiently block the coupling channel for resonant transmission, leading to a suppression of transmission. Full-wave simulations predict a transmission modulation of 95.7% via this mechanism. Experimental measurements reveal a modulation efficiency of 28.6% in transmission at 1,397 cm(-1), corresponding to a 2.67-fold improvement over transmission without a metallic slit array. This work paves the way for enhancing light modulation in graphene plasmonics by employing noble metal plasmonic structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber

In this paper, the periodic double-layer graphene ribbon arrays placed near a metallic ground plate coated by a dielectric layer are proposed and analyzed by the coupled-mode theory (CMT) to predict the perfect absorption response in the mid-infrared region. Numerical simulations of the finite-difference time-domain (FDTD) method confirm this effect and give the underlying physical origin. The ...

متن کامل

Effect of finite metallic grating size on Rayleigh anomaly-surface plasmon polariton resonances.

Rayleigh anomalies (RAs) and surface plasmon polaritons (SPPs) on subwavelength metallic gratings play pivotal roles in many interesting phenomena such as extraordinary optical transmission. In this work, we present a theoretical analysis of the effect of finite metallic grating size on RA-SPP resonances based on the combination of rigorous coupled wave analysis and finite aperture diffraction....

متن کامل

Broad electrical tuning of graphene-loaded plasmonic antennas.

Plasmonic antennas enable the conversion of light from free space into subwavelength volumes and vice versa, which facilitates the manipulation of light at the nanoscale. Dynamic control of the properties of antennas is desirable for many applications, including biochemical sensors, reconfigurable meta-surfaces and compact optoelectronic devices. The combination of metallic structures and graph...

متن کامل

Resonant terahertz transmission in plasmonic arrays of subwavelength holes

A review of transmission properties of two-dimensional plasmonic structures in the terahertz regime is presented. Resonant terahertz transmission was demonstrated in arrays of subwavelength holes patterned on both metals and semiconductors. The effects of hole shape, hole dimensions, dielectric function of metals, array film thickness, and a dielectric overlayer were investigated by the state-o...

متن کامل

Circular slit-groove plasmonic interferometers: a generalized approach to high-throughput biochemical sensing

A class of plasmonic interferometers consisting of a circular slit flanked by a concentric circular groove is demonstrated. Laying in-between the conventional bullseye and the linear slit-groove interferometers, these circular slit-groove interferometers show a polarization-insensitive optical response (thanks to the rotational symmetry imposed by the circular geometry), and overall higher ligh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016